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ABSTRACT

An on-line digital system allowing an
unusually direct coupling between the user
(physicist, mathematician, engineer) and the
computer is described. This system, which
has been successfully operated during the
past six months, was designed principally to
provide assistance for problems whose structure
is partially unknown (and frequently surprising).
These typically require the development of new
methods of attack, and hence an amount of program
experimentation not feasible with classical
computer center organizations. With the system
described here, the interaction between user and
computer is close enough to permit effective use
of a scientist's intuition and of his detailed
understanding of techniques appropriate to his
special field. He is able to construct, with ease,
and with no necessity for a knowledge of con-
ventional programming techniques and procedures,
machine representations of those tools he considers
essential to his area, and then use these, on-line,
to study or solve problems of interest - The
current system is described in detail its
application to a particular illustrati e roblem
is outlined. Implications concerning the xtension
of the technique to typical, large digital omputer
installations are given.



I. INTRODUCTION

Despite the impressive achievements in computer hardware and

programming techniques in recent years, the most significant gains

presently realizable are associated with new approaches to the use,

the organization and the logical structure of computers. One line

of research has had as its goal the assumption by the computer of

certain activities generally associated with human beings; the

resultant study of learning machines, adaptive machines, et al has

been very fruitful. Quite a different approach has been taken by

those who instead seek ways of improving the man-machine communi-

cation so that the computer can more effectively assist the man

in those jobs (requiring intuition, judgment, evaluation) for which

he is best suited. Although no universally accepted nomenclature

seems to exist, it is sometimes characterized as a means of getting

a man "on-line" with a computer , as opposed to his usual "off-line"

status of wading through reams of computer print-out .

Adopting this term, we describe here an operating "on-line"

computer research center which provides an unusually close coupling

between the man who originates a problem and

a (modern, large electronic digital) computer. We hope this example

of what can be accomplished using computer hardware well within the

existing state-of-the-art will be useful to others concerned with

the development of on-line techniques.

This work was initially motivated by the troubles which have

been commonly encountered in using a computer to solve research

problems whose structure is for the most part unknown and frequently
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surprising. It is notoriously difficult to obtain a satisfactory

computer program if one does not understand, a priori, the general

character of the solution. In fact, information about the general

character is often what we really want, rather than quantitative

details. It is possible in principle to attempt a kind of

experimental mathematics, starting with some promising method of

solution and the associated program and modifying one or both in

the light of the results obtained. However, the lapse of time

between the selection of a new method, or the modification of an

old one, and the return of information from the computer to the

user is in most cases so long as to make this almost infeasible.

The source of the difficulty is basically the poor ccmmuni-

cation between the "user" (by which we shall henceforth mean the

scientist or mathematician who originates a problem and knows

most about it) and the computer, consequent upon considerations

of economy and, as well, upon the inherent difficulty of imparting

to a programmer the detailed and specialized knowledge one acquires

about a particular problem area after working in it for some time.

One anticipates a significant improvement in a system, such as

that described here, which provides for a rapid, direct, comfortable

interchange of information between man and machine. In fact,

however, one reaps even greater rewards; if the communication link

is established in the proper way it becomes possible for the user

to apply, simultaneously, to the problem his own intuition,

experience, and knowledge of specialized techniques on the one

hand and the tremendous computational power of the machine on the
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other. As we shall see, it is possible for him to build a

representation in the computer, of those analytic tools he

believes valuable for a particular problem or problem area.

Without any necessity for learning conventional programming

techniques, he is able, using only the concepts of classical

mathematics, to create his own machine language, one tailor-

made to his own needs. He can freely manipulate the elements

of this language, in precisely the same fashion one composes

mathematical techniques, and can easily modify them to

incorporate the knowledge gained from their use in problem

solving, so that his computing capability grows with his

understanding of the problems.

We shall describe this "on-line" system from the point of

view of a typical user rather than that of a "computer expert",

by which we shall henceforth mean someone skilled in the art of

programming, as opposed to the "user" whom we assune to be

totally unversed in such matters. The programing principles

and details will be the subject of a separate article. We shall

only discuss the presently existing system, as it has been

operating since August, 1962. While this will inevitably entail

the mention of certain specific aspects of the particular computer

uses (AN/FSQ-27; RW-400), it should be kept firmly in mind, that

while the detailed organizational choices were such as to take

maximum advantage of the particular characteristics of this

machine, the on-line techniques are in no My dependent upon
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these characteristics. In the last chapter we sketch a method for

using these on-line techniques with a standard operational computer

center, a method consistent with the usual economic constraints

on computer time.

In what follows, we restrict ourselves to the use of on-line

techniques in the solution of mathematical and physical problems,

this being the area of principal interest to us and the only one

in which we have actual experience with an on-line system. We

believe, however that the techniques can be extended to quite

different areas of computer applications, a point to which we

return in the last chapter. Meanwhile, we shall, in the interests

of clarity, confine ourselves to a very specific description of

the present system.

This work is an extension of an initial effort in which a

particular problem, the energy gap integral equation of the

Bardeen-Cooper-Schrieffer theory of superconductivity, was solved

2)with an on-line approach . However, in that work, which was

carried out in the period July through December 1961, all of the

subroutines for the problem were programmed in a conventional way.

While the user was free to compose these elements in various ways

using the control and display capabilities of the control console

in solving the gap equation, he had no freedom to modify, on-line,

the subroutines or create new ones, a freedom which is an

essential characteristic of the present system. Thus, the earlier

work comprised some aspects of items A and B, described below, but

none of item C, the console programming.
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A

II. THE ON-LINE SYSTEM

At the outset, we should emphasize that each aspect of the

design of such a system involves a number of choices. We shall

describe here our own, with no representation that they are in

every case the optimum ones; in fact, in some cases experience

has indicated how some of these might be improved. Nonetheless,

the resulting system operates in a very satisfactory manner.

Three principal features, independent but interacting,

characterize the system:

A. Functional Orientation

The programming structure is such that in the computer,

as it appears to the user, functions (sets of 101 points) rather

than individual numbers constitute the elements while the

repertoire of "commands" consists of operations on functions

(e.g., arithmetic, differential, and integral operations).

B. Control and Display Capability

Central to the operation of the system is a control console

having a number of push buttons or keys, which allow for user

control of the computer, and two 17 inch CRT oscilloscopes (with

line-drawing capability) which provide direct graphical repre-

sentation of computational results. An 8 inch CRT with alpha-

numeric capability and a flexwriter provide numerical output

when required.

C. Console Programming

A simple procedure allows the user to construct, directly at

the console, new subroutines, using as building blocks an initial

-5-



set of hand programmed3 ) subroutines, plus any subroutines

previously created by this "console programming"4 ) procedure.

We shall now flesh out this skeletal description with

further details. The keys of the control console are divided

into three groups: 24 are used for function storage; 30 to

designate operations on these functions; and 11 (the digits

0 through 9, @ and D ) for the input of individual numbers 5).

Throughout we mean by a "function" a set of 101 points, i.e.,

202 numbers, represented in the computer as 202 machine words,

each word having 26 bits . (The choice of 100 intervals for

the description of a function is one example of the arbitrary

choices mentioned in the first paragraph. With fewer points

one cannot adequately represent very much structure, while if

100 are insufficient one should probably use a different scale,

or a different representation.) In addition to the 202 numbers,

which all lie between -1 and 1, each function carries two scale

factors (to base 2), one for abscissa values (sx), the other

for ordinates (s ). The actual function values are thus the

Syproduct of the 101 mantissas Yn', 1 :9 n !S 101 and the cormmon

scale factor, 2 . For convenience, a block of 256 words is

assigned to each function, the remaining 52 words being available

for other labeling, for functional values (in the sense of

Volterra), etc.

Because the computer module (am) of the RW-400 has only

1024 words, functions are stored on an 80,000 word magnetic drum.
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Half of the CM memory is used for two "function registers", called

the C and D registers, each having a capacity of 256 words. They

play a role for functions quite analogous to that which the

accumulator in a computer plays for numbers: functions to be

operated upon are loaded into the C and D register and tbel

resulting function is eventually stored back on the drum.

Each of the 24 function storage keys addresses a particular

section of the drum but this is of no concern to the user, who

may think of the keys themselves as the storage locations. These

keys initially carry some neutral labeling (e.g., the letters A

through X) but as the user stores functions in them he relabels

them (using any convenient nomenclature) to indicate the function

stored there.

We can now describe some of the basic operator keys. LOAD

and STORE bring any desired function from the drum into the D

register or, conversely, store the contents of the D register

into any specified function location. For example, pressing the

LOAD key and then some function key, say R (or in a shorthand

notation we shall employ henceforth, in which each word or symbol

corresponds to the name of a particular operator or function key,

LOAD R) brings the function stored in key R into the D register.

Similarly, STORE F transfers whatever function may be in the D

register to location F. In both cases, the words written (on the

drum or in the CK memory) replace whatever was previously in that

location. (The contents of the cells from which the information was

taken are left unchanged so that immediately after LOAD A or STORE A

both the D register and the A key contain the same function.)
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The operator key J-GEN creates the identity function,

y = x, (-l x :- 1) and puts it in the D register. The arithmetic

keys (+, -, , ") cause the computer to carry out the indicated

operation on the ordinates of two designated functions, assuming

the abscissaes to be the same. For example, pushing the four keys

LOAD A + G

causes the computer to load whatever function is in location A

into the D register; to load the function in location G into the

C register; to add the y coordinates of the C and D registers,

with differences, if any, in the y scale values properly taken

into account; and finally to store the result in the y coordinates

of the D register, leaving the x coordinates of the D register

unchanged. If the user wishes the sun stored in some function

storage location, say P, he then pushes STORE P. Alternatively,

he can continue on with a series of arithmetic operations, all of

which follow the same pattern. (Once the + button has been pushed,

one may add as many functions as desired by simply pushing the

+ button again. This is true in general; once an operator button

has been pushed that operation is continued as long as no other

operator buttons have been pushed.)

Individual nimbers can be put into the computer in a variety

of ways. Since constant functions are sometimes required, we use

them to represent also constant numbers, but this is by no means

necessary. The procedure is simply: push the LOAD button; then

type in the sign, followed by a mantissa less than 1, and any
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desired power of .0, positive or negative. (For example, 11.56

is entered as.l156@ 02.) A constant function whose value is

equal to this nunber is thereby loaded into the D register (i.e.,

the x values of the D register range as usual from -1 to +1 and

the y values are all equal to the desired constant).

The DISPLAY key allows the user to see a graphical repre-

sentation of any of the stored functions. DISPLAY A, for example,

causes the computer to display on one of the 17 inch CRT scopes,

the 101 points stored as functional values in location A, with

adjacent points connected by straight line segments. Pressing

the A key once more will erase the display curve from the scope

(although not of course from the drum location where it is

stored). Since only the mantissa values of a function are

displayed on the CRT, we sometimes wish to check the scale of

the whole function. This is done with the DISPLAY SCALE key,

which causes the ordinate scale value, Sy, of the D register to

be displayed on the alphanumeric scope. One thus has the

capability of carrying out arithmetic and algebra on functions

and examining the results graphically whenever desired.

The essential elements of calculus are provided by the

and Z keys. The former simply takes differences of adjacent

ordinate values in the D register and leaves the result in the

D register, e.g., (Yn - Yn-1 ) replaces Yn, 2 5 n 5 101, with a

special treatment at the lefthand end point (for example, the

first difference computed on the basis of a second or third
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order fit to the function values at that end replaces yl). E is

just a cumulative sum of the ordinate values in the D register

with the result left in the D register (0 replaces y1

n-i

and Z yk)replaces Y, 2!5 n !IOl).

From these two keys it is easy to construct approximations of

any desired accuracy to the derivative and (indefinite) integral

operators.

At this point, the general nature of items A and B above

should be clear. One has, in effect, a powerful, and exceedingly

fancy, combination hand computer and plotting machine. Any

desired function can be readily created in the computer (using

power series, asymptotic series, etc.) and one can perform all

of the operations of classical analysis upon them. Suppose, for

example, one wants the sine of some function, f, which has been

loaded into the D register and suppose further f is sufficiently

small so that the first two terms of a power series

f3
sin f = f - - )

suffice. Select two function keys, F and G, as "working space".

The following keys would then be pushed:

STOREF • F F STOREG LOAD 0.166667 ( 00 • G + F (2)

If f was initially in the D register, sin f, to the accuracy of

Eq. (1), will now be there. In precisely similar fashion one could
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obtain a representation of the sine function to any desired number

of terms of the power series. However, it is clearly infeasible

to go through this sequence of key pushes every time one wants

the sine function. It is at this point that feature C, "console

programming", comes in; like a giant lever (or a strong bootstrap)

it provides an enormous multiplication of the capability available

to the user.

Clearly, all that is required is that the computer be able

to "remember" and suitably record a sequence of key pushes such

as that given in the example above. Moreover, it should then, in

some sense, attach this list of key pushes to some previously

blank key, which thereby acquires significance. The procedure is

simple: we select some key, hitherto blank, which we decide will

be the SINE key, and so label it. We then "program" this key using

the PROGRAM key in the following way. First push PROGRAM; then

push the (hitherto blank) key which will henceforth be the SINE

key; then push precisely the buttons listed in (2); finally, at

the end, push the PROGRAM button again. The result is that the

machine goes through a "dry run", i.e., executes the co=mands (2)

in precisely the same fashion as if we had not pushed the PROGRAM

button; examination (e.g., via the display capability) of the

result of this dry run immediately provides a first check on the

console program just created. In addition, however, the computer

constructs a list of these key pushes, termed a "subroutine", and

"inserts" it under the SINE key. If at any time in the future we
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push the SINE key, the computer will go through precisely this

sequence of operations6 ). Furthermore, we can in the same fashion

program other keys, using as component keys not only the initial

hand programmed ones (such as +, etc.) but also any keys which

a have been console programmed in the above fashion. These new keys

can, in turn, be used as components of other console programs,

and so on, to a depth limited only by the storage volume. (The

present system allows for 256 such console programs but this

could easily be expanded by several factors of 2.) In this way

the operator creates his own subroutines, of arbitrary complexity,

and pyramids these to achieve whatever computing capability he

desires.

At this point it becomes difficult to describe adequately the

generality and utility of the resultant system, just as it would be

difficult to explain to a college freshman (in less than a few

semesters) why algebra or calculus, whose basic principles can

after all be rather concisely stated, is so useful. The on-line

system has a structure very close to that of mathematics in its

open-endedness, its generality and the constructive capability it

affords the user. We shall therefore simply use the rest of this

section to describe briefly the other hand programmed keys which

are initially provided to every user when he begins work, and in

the next section illustrate how this capability was used for one

particular, fairly illustrative problem. A detailed characterization

of all the hand programmed keys is given in Appendix A.
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To begin with, the 30 operator keys physically present on the

control console are by no means enough to encompass the initial

hand programs plus the console programs needed in a typical

problem. We therefore employ the concept of "overlays". To each

overlay corresponds a set of meanings for the operator keys;

changing the overlay changes the significance of all of these keys.

The number of overlays is limited only by the size of the large

volume storage in the computer system; in our case there are 32

overlays. One key common to every overlay is OVERIAY IN. The

user changes overlays by simply pressing OVERLAY IN and then

typing in, on the numerical keys, the number of the overlay he

wishes to use. The 256 word program (which comprises the overlay

from the programming point of view) is thereupon brought from the

drum into the computer and all further key pushes will be inter-

preted by the computer in terms of that overlay until the operator

makes a change of overlay. (In addition to the OVERAY-IN and

PROGRAM keys, five others, to be described later - REPEAT, OVERAY-

OUT, DISPLAY-OV-NUMBER, INSERT and DO - are common to all overlays,

leaving a total of 24 x 32 = 768 keys in the present system, each

of which can have a hand program or a console program.) The

existence of multiple overlays modifies the console programming

procedure slightly in that we must inform the computer not only

which key is to be programmed but also which overlay we want that

key to be on. The latter is accomplished by simply typing in the

desired overlay number (on the numerical keys) immediately after

-13-



pushing the key being programmed: for example, PROGRAM SINE 10

followed by the key pushes (2) And then PROGRAM would attach the

subroutine (2) to the indicated key of Overlay 10.

In a similar way, the total number of function storage keys

available can be multiplied up from the 24 keys physically present

to an extent again limited only by storage space. In the present

system, we have 6 'banks" of these function keys, giving a total

of 144 function storage locations. This too can be accomplished

in many ways; at present, in place of the LOAD and STORE keys

described above, we have in fact six LOAD and six STORE keys.

Thus, LOADI A will load into the D register whatever function is

under key A on bank I; STOREVI F will store into key F of bank VI

whatever function is in the D register, etc. (We use Roman

numerals to label banks, Arabic to label overlays, thus minimizing

a possible source of confusion.)

In typical operation, a user begins with an initial complement

of hand programs and, working for a period of one to two hours ) ,

creates and checks (by observing the character of displayed curves,

examining individual numerical values, running test cases, etc.)

the console programs he needs. When his period of operation is

finished, he pushes the SYSTEM DUMP button which stores the entire

system (contents of the computers and of the drum) into a

designated section of magnetic tape. When he next returns to the

machine his system is loaded back from this tape and the computer

is in precisely the same state as when he left. In the interim
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another user comes to the machine, and loads his system from tape.

All of the buttons, save for the initial core of hand programs,

will typically be different for two users so that arguments

concerning the value, efficiency or desirability of any particular

console programming need never arise; each user makes his own

choice, i.e., literally creates his own language,

When a user returns to the machine, SYSTEM LOAD (the inverse

of SYSTEM DUMP), using his tape, restores the system (computer and

drum) to precisely the state in which he left it, so that he can

continue on, creating new console programs or, when he has built

sufficient capability, attacking his problem. If, in the latter

case, he immediately discovers a need to create new console

programs or modify existing ones he is free to do so. (To

reprogram a key he simply programs it as though it were blank;

any previous program is simply buried.)

The SYSTEM LOAD and DUMP buttons are part of a "system"

overlay which allows one to control the several components of the

RW-4OO system: to write out a block of data on (or read a block

from) a tape unit, a buffer, the drum, etc.; aside from the tape

operations, these are of interest principally to the computer

expert rather than to the typical user, so we shall leave further

details for the Appendix. (See Section A4, System Control

Capabilities.)
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The remaining hand programmed keys fall into three

groups:

1. Mathematical Operations

These include first of all the arithmetic operations (on
ti 4

functions!) which have been mentioned already but require further

comment. There are at least three ways of carrying out the

function arithmetic: fixed point (with respect to the entire

function), floating point (with respect to the entire function)

or floating point for each point of the function. Since each has

its own virtues, it is desirable to allow the user a free choice.

Thus on Overlay 01 the arithmetic is done in a fixed point fashion.

For example, when two functions are added, the y scales are

compared and the smaller of the two is made equal to the larger

one, the associated mantissa values being decreased (i.e., shifted

to the right) enough times so that the functional values (mantissa

plus scale) remain unchanged; the mantissa y values are then simply

added together. If at some point the sUM of these happens to be

greater than 1, there will be an overflow. This is readily apparent

if the sum is displayed, but it may happen in the course of a

console program (unless one has correctly anticipated all scaling

aspects of the problem) and can then be a considerable nuisance.

Similar comments apply to divide, which will overflow at any points

where the mantissa of the numerator exceeds the mantissa of the

denominator. A second arithmetic overlay, 02, provides protection

against such overflows by first floating and then contracting both
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summands before addition. In division, the numerator and denominator

are first floated and then the numerator is contracted enough times

to prevent overflow at any point, if no more than 12 contractions

are required, but no more than 12 are made in any case. An

Overlay 03,in which the arithmetic is done on a floating point basis

for each individual point of the functions, has recently been

incorporated into the system but we have not yet sufficient

experience to compare it with the other two. Of the latter, Overlay

02 is generally the more convenient, but in special circumstances

(larger range of variation within a single function) can lead to

more loss of accuracy than would result from the careful use of

Overlay 01.

In addition, we have the following: EXPAND y decreases sY

by 1 and doubles all the mantissas of the D register; CONTRACT y

is its converse. (They are needed in conjunction with the arithmetic

on Overlay 01 and also allow examination (on the CRT) of small

amplitude structure of a curve, display of curves at common scale,

etc.) FLOAT MANTISSA does EXPAND y as many times as possible

without causing overflow at any point. EVALUATE picks out the

value of the function in the D register at the x coordinate

closest to any designated value. REFLECT interchanges the x and y

coordinates of the D register; SUBSTITUTE puts the y coordinates of

the C register in place of the x coordinates of the D register.

(Using REFLECT and SUBSTITUTE one can create, from the real function

arithmetic hand programs, console programs for complex function

arithmetic. Using REFLECT and EVALUATE one can find extrema of
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a function.) 5-FUNCTION creates in the D register a function

which is 1 at any desired point and zero elsewhere. INTEGRAL-

TRANSFORM transforms the function f in the D register, using a

kernel K(x, x') previously stored on tape as 101 functions of x',

and leaves the result, f(x) = fdxI K(x, x') f(x'), in the

x coordinates of the D register. EXPONENTIAL, SINE and COSINE

operate on the function contained in the D register, leaving the

result in the D register. LEFT-SHIFT and RIGHT-SHIFT perform the

indicated operations on the y coordinates of the D register.

RELATIVE INTERPOLATE accepts graphical point inputs (via user-

controlled crosshairs on the CRT) and modifies the function in

the D register so that it passes through these data points,

preserving its initial shape between data points.

2. Aids to Console Programming

These include besides the PROGRAM key already described,

also REPEAT, a key which allows any console program keys to be

repeated any desired number of times, and two keys (TALLY and

COMPARE) which provide the capability for branching within a

console program.

3. Display and Output Keys

These provide the capability to display on the alphanumeric

scope the number of the overlay currently in the computer; to

erase all curves from the CRT; to display (on the alphanumeric

scope) the binary scale of the function in the D register, as

well as the value of the first point of that function; to input

-18-



9

individual points graphically, using a movable crosshair; to print

a hard copy of any desired curve on the flexwriter; to produce

-English language labels for kernels stored on tape, dumps stored

on tape, or curves printed out on the flexwriter; to display

curves on either of the two 17 inch CRT's; to use other display

formats (dots along, crosses, circles, etc.) as well as the usual

display of line segments.

In addition to these, there are Aids for the Hand Programmer

involving the convenient input of machine words from the console,

the display of sections of memory in machine language, etc..

These are described in the Appendix, together with more detailed

specification of all the keys already mentioned.

In a class by itself is the SECOND-COMPUTER key which at

first glance seems highly specific to the RW-400 and yet really

provides an excellent illustration of how to set up an on-line

system for an arbitrary computer. In the RW-400 system, there

are two identical computer modules, CM-1 and CM-2. The control

console is tied directly to CM-1 and this is the only one used in

all of the operations described so far. Suppose however that

operator key [K] on Overlay 10 is a rather long program, requiring

several minutes or more to run. It is then efficient to use the

SECOND-COMPUTER key, as follows: press SECOND-COMPUTER, press [K]

and type in the number (in this case 10) of the overlay on which [K]

is located. CM-2 then performs this program, taking the subroutines

and curves needed from the drum in the same way that CM-1 would do.
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While this is going on, however, the user is free to operate in

the normal fashion with the control console and CM-I, doing

computations; examining, if he likes, intermediate results as

they are generated by CM-2; preparing new programs; setting up

material for the next case; etc. In the last chapter we will

explain how this serves as a model for an on-line system using

a conventional, large central computer.
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AN ILLUSTRATIVE PROBLEM

As an illustration of the use of the on-line system, we

describe briefly one problem we have studied, a linear integral

equation for a complex function of a real variable. While a

single problem can no more exhibit the power and generality

of the on-line system than any one application of, say, calculus,

can illustrate the utility of classical analysis, we include

it to show the ease with which rather sophisticated mathematical

techniques can be employed in a system of this sort.

We present the problem as a mathematical one, essentially

suppressing the context of physics from which it arose; outline

the mathematical methods used; indicate some of the principal

console programs generated to implement these methods; and show

a few sample results. We can state, but not easily illustrate,

one essential point: the method of solution finally adopted was

itself the result of experimentation with the on-line system.

Several approaches were tried; some quickly proved themselves

unsuitable, but as we learned more about the nature of the

solutions, we were able to develop satisfactory methods for

obtaining them. Thus, quite apart from questions of mathematical

convergence (e.g., of an iteration process), one sees a convergence

in a kind of space of mathematical techniques.

A study of the electrosatc wave fluctuations in an electron-

ion plasma subjected to an external electric field leads to the

following integral equation8 ) for the fluctuation electric field,

of wave number k, as a function of time:
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t
E(t) + fO dt'IKe(t-t') exp 1 [(t) - (t')] +

5 K (t-t') exp ib [(t') At E(t') = I(t), (3)

01_ t_ T

where

K(t) =te-k2t2/4 Ki(t) - te-5k2t2/4

0(t) = E t2/2 + ut 5 = 1/1836

and I(t) is given. (We have chosen units in which the electron

thermal speed (2T/m)1/2 and the plasma frequency, (41ne2/m)1/2 ,

are unity.) We shall say no more here about the physics of the

problem since this is discussed elsewhere9), and only sketch

the on-line techniques used to solve it.

Using an operator notation for the integral transforms

in (3),

t

K • E G dt' Ke(t-t') E(t'), etc. (4)

we can write (3) as

E + e' Ke • (e-'OE) + be'i8$Ki . ei5E) - I (5)

Over the time interval of interest (T. Oi) the norm of the

first operator in (5) is so large, for k !E 1, that an attempt

at direct iteration proved useless. (As can be seen from the

soluble special case, k = B = 0 = 0, this corresponds to computing
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sin t by a power series on the interval 0-5 t :S T.) However,

the transformation

F = ei E (6)

gives an integral equation for F.

.ei

which can be solved by iterating only the last of the terms on

the left hand side. The equation

F + K F A (8)

has the solution

F = A -L 'A (9)

where L is, like K , a translate type integral operator and

hence specified by a single function L

t

[e., e - odt'I Le(t-t'1) A(t')

which must obey an equation like (8) with A replaced by K ee

L + -K L = K (10)

Having once found (for given k) the function Le, we write (7) as

F - (1 J - be-iYL e CYF] (11)

and solve it by iteration

Fnl= (l -e) [-5e' Ki• (ei F)] (12)
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With a reasonable initial guess, e.g., F0 = J, we find that this

converges splendidly (three iterations). Fran F we compute,

finally, E = ei$F.

The first step is to find Le from (10). For the reasons

noted above, straight iteration is ruled out. While (10) can

indeed be solved with Laplace transforms, the transform of Le

involves the error function of complex argument 9 ) and hence is

difficult to invert. Instead, we take advantage of the fact

that problems which are "adjacent" in a mathematical sense are,

within the on-line system, adjacent also in a computational

sense. If K is replaced by
e

R =_ N2te-at, (13)

then the inverse kernel function, L , satisfying

IR+ R LR=R (14)

is simply
LR = Ne- a t sin Nt. (15)

We therefore write (10) in the form

L e+ R •L e= K e+ D"- L e(16)
e - e e -' e (6

D = R - K (17)

and choose N and a so as to make the norm of D small (e.g.,

a = k, N = 2), thus permitting an iterative solution,

(n+l) .( (K + D - L (n) (18)
e e ( e
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This converges nicely (three or four iterations) to yield a result

which will differ from the exact solution of (10) only in consequence

of the approximation inherent in numerical methods. However, we can

exploit the linearity of (10) to obtain a more accurate solution as

follows. Let L be the result obtained by iterating (18) until it

has converged. The error in L is measured by the size of

P-I-K - L - K e L (19)e

and the difference 7 = L - L satisfies

+ Ke '7 = P  (20)

or equivalently

= (l ') (P (21)

i.e., an equation identical with (18) save for the inhonogeneous

term. If L is determined from (18) up to a percentage error of

order E, we can findl from (21). also with a percentage error of

order and hence get an approximation, L + , to Le which has
2

an error of order C . In a similar fashion we can find a

correction to ? , and so forth.
We now indicate how the on-line system was used to solve (7)

by these methods. To begin with, certain function keys are assigned

to the constant parameters of the problem and to the principal

independent and dependent variables as shown in Table I. Locations

for constant functions which one finds it convenient to have on

hand are assigned as the need arises. (The notation in Table I
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k u T

8 a

t K eK R

LRe 2

L LILIfL 1

kernel working
f f source space

Table I

Assignment of function i*torage spaces (keys) on Bank I
for the '%.asma ascillation -problem. Significance of the 'Symbols

is egven in Eqs. (3) through (23).
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is the same as in Eqs. (3) through (23); the meaning of other

symbols will be explained below.) Once assigned, the labels on

the function keys are used in referring to these keys rather than

the neutral ones (A, B, .... X) of the preceding chapter.

Operator keys are then created, using the console programming

procedure, some of the principal ones being as follows:

[t] This creates the function t = T(x+l)/2 (assuming

that the desired value of T has been previously stored in the T

key of bank I) and stores it in t on bank I. It also computes At

and stores it in At. As an illustration of console programming,

we list the key pushes made in programming this key , which we

suppose is to be on, say, overlay 10:

PROGRAM [t] 10 OVERLAY-IN 02 J-GEN • 1/2

+ 1/2 • T STORE t ; STORE &t ROGRAM (22)

INITIAL SET-UP This simply displays on the alphanumeric

scope the names of the constant parameters (E, T, k, B) and,

next to each, the value presently stored for it on bank I. If the

user wishes to change any of these he can, of course, do so before

running the problem. This program also stores the various constants

indicated in Table I and finally pushes the [t] key. Thus one

knows that everything is in order for the start of a calculation.

[K] This simply computes the kernel function Ke(t) and

stores it on bank I.

[R] This computes and stores the function, R(t) defined

by (13), using whatever values the user has stored in N and a on

bank I.
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[LR] This computes and stores the function LR(t) defined by

(15). It, for example, was programmed by:

PROGRAM LR 10 OVERLAY-IN 02 LOAD t • N SINE STORE L LOAD -1

. t a EXP • N LR STORE LR PROGRAM.

(Note that in this we have used the N key as a temporary

working space to store one factor of the final answer.)

We frequently need to generate, on tape, the 101 functions

which comprise one of our translate kernels. To produce this

capability, we first program a KERNEL-GENERATE-AUXILIARY (KGA)

key as follows:

PROGRAM KGA 10 OVERLAY-IN 02 LOAD KERNEL-SOURCE TAPE-WRITE

LEFT-SHIFT STORE KERNEL-SOURCE OVERLAY-IN 10 PROGRAM.

This subroutine takes whatever function is in the kernel-source

space on bank I, writes it out on tape, left shifts it,(Yn+1 replaces Y) and

stores it back in the kernel-source space. We end it by calling

in the overlay (10) on which KGA has been programmed in order

that it be a repeatable key. The key which will actually produce

the kernel on tape is then made by simply repeating the KGA key,

i.e., we make a KERNEL-GEN key as follows:

PROGRAM KENEL-GEN 10 OVERLAY-IN 10 REPEAT KGA 101 PROGRAM.

(Repeat [K] followed by a number, n, causes key [K] to be repeated

n times.)

It is clearly now a simple matter to make, for any desired

value of k, the various functions and kernels needed for (18).
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Since we will be taking many integral transforms, it proves

convenient to incorporate the hand-programmed integral transform

key (which produces in the x-coordinates of the D register the

transform of the function in the y-coordinates of the D register)

into a simple console program which will produce in the f space of

bank I the transform of whatever function has been stored in f

on bank I. We designate this as INT-TRABB and, using it, program

a new key, ITERATE-Le which does one pass of (18) as follows.

Assume that the kernel D has been stored on tape and, following

it, the kernel L1R; that the tape is positioned to the beginning

of the D kernel; and that some initial guess, or the result of

a previous iteration is in Le on bank I. We then do

PROGRAM ITERATE-L 10 OVERLAY-IN 02 LOAD L STORE f OVERlAY-IN 10

INT-TRANS OVEMlAY-IN 02 LOAD f + K STORE f OVERLAY-IN 10e

INT-TRANS OVERLAY-IN 02 LOADI f - f STOREI Le REWIND-TAPE (23)

OVERLAY-IN 10 PROGRAM

Although the program (23) is adequate, we add to it certain

display and storage features which increase the convenience of

operation. That is, after checking (with simple examples,

special cases, etc.) the correctness of (23), we program another

keyTLe1which first pushes the ITERATE-Le key (23) and then

goes on to store the resultant L in key L, having first movede

the contents of L'' into L'"', L' into L'', and L into L'. Thus

as the new key[Lejis repeated, we are able to examine the results

of the most recent four passes (and could, of course, save even

earlier ones if desired, by using one of the other banks). In
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addition, the new key erases the scope and then displays on it

the contents of L' (dotted) and the contents of L (usual dot-plus

line display). Thus, each time the key is pushed the user sees,

as soon as the pass has been completed, both the new result and,

for comparison, the previous one, so that he can judge the

convergence characteristics of the iteration process (18).

(One could as well display the ratio or difference of the old

and new curves, etc.)

The reader who has followed the details of the last few

paragraphs can supply those omitted from what follows. Having

credited the programs needed for (18), we can use them also for

(21) and, by repeating the correction process, obtain a very

accurate L . From it we make anT,, kernel (using KERNEL-GEN)e e

and also the Ki kernel and are then in a position to solve (12),

i.e., to make a key which will do one iteration of (12). The

only new complication lies in the complex character of F, but this

causes no real difficulty. We simply write out on tape two copies

of Ii kernel, followed by two of je. The ITERATE-F key then

multiplies F by ei', uses the INT-TRANS key to transform the

real part of the product with Ki, stores that in some working-

space function key, transforms the imaginary part withiA,

combines the results into a single complex function, multiplies

this by 5e'i- , subtracts that from J, transforms the real part

with L , then the imaginary part, etc.

-30-



This requires, of course, that one create also keys which

produce etiV (used only after a change of E or u) and keys

which give complex arithmetic capability. Using REFLECT and

SUBSTITUTE, one can easily program, for example, a COMPOSE key

(which, given two real functions, f(t) and fI(t), in two standard

locations composes them into a single complex function t=(fR, fI) with

the parameter t eliminated) and a DECOMPOSE key which is its inverse.

For example, designate 3 keys as fR' fI' f and then make COMPOSE by

PROGRAM COMPOSE 10 OVERLAY-IN 02 • fR LOAD f,

SUBSTITUTE STORE f PROGRAM

(We use • fR as a way of loading fR into the C register.)

Similarly we have

PROGRAM DECOMPOSE 10 OVERIAY-IN 02 LOAD 0 + f STORE fI

LOAD f REFLECT STORE fR LOAD 0 + fR STORE fR PROGRAM

(LOAD 0 + fR STORE fR is Just a way of restoring standard x

coordinates to fR so that it will look normal when displayed,)

From these, it is then a simple matter to make the keys for

complex function arithnetic.

Using the ITERATE-F key, and the , kernels generated by

the procedure described above, it is an easy matter to obtain

solutions of (3) for a variety of values of the parameters k, u

and E. As we see from Figure 2 the kernel Le, which is a sine

wave for k = 0, is increasingly damped with increasing k.

(Having computed L one can compare it with the result obtained

by keeping only the least damped pole of the Laplace transform
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of L when inverting the latter by contour integrationg); ase

shown in Figure 2, the agreement is fairly good save near

t = 0.) Understanding the somewhat exotic curves which result

is assisted by comparing them with analytically soluble problems,

e.g., those obtained by omitting the K operator in Eq. (3) or

setting E equal to 0. Some typical results are shown in

Figure 3 through 8 for the case I(t) = 1. An analysis of the

results and a discussion of their significance is given

elsewhere 9.
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DISCUSSION

The on-line system we have described is specific both as

regards the computer used and the area of mathematics emphasized

(classical analysis), the choice of the computer being a

consequence of its availability, while the selection of problem

areas was dictated by the research interests of the participants.

On the basis of the experience gained in the design and operation

(since July, 1962) of this particular system, the extension of

these on-line techniques to other computers and to other areas

of application appears rather straightforward.

We first outline a system which would be suitable for a

conventional, large central computer and which would permit an

operation identical, from the user's point of view, with that

we have described here. Besides the central computer itself,

one needs a large volume storage element, such as a disc file,

and a small satellite computer, one with a memory of the order

of 8,000 to 10,000 words and a 5 to 10 microsecond cycle time.

As input/output equipment, the satellite computer would have

two electric typewriters, whose keys take the place of the

control console keys, and two CRT display scopes, each capable

of displaying of the order of 1000 points furnished by the

satellite computer, and connecting pairs of these with line

segments when desired.

The operation parallels that of the present system when

the SECOND COMPUTER key is used, the control console and the
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first computer module of the RW-400 being replaced by the satellite

computer plus its input/output equipment; the drum (where curves

and subroutines are stored) being replaced by the disc file; and

the second RW-400 computer module being replaced by the (larger

and far more rapid) central computer. The satellite computer is

used to compose and check console programs and for all trivial

computing: examination and comparison of curves, formation of

ratios and differences, simple test cases, etc. Only when the

user has progressed to a point of having a substantial computational

task which he wishes performed, is the central computer involved.

He simply presses the CENTRAL COMPUTER key and then any of the keys

he has previously console programmed (with the satellite computer).

The CENTRAL COMPUTER is not interrupted, but when it finishes the

task on which it is presently engaged and returns to its own

control system for a next assignment, it is directed to take from

the disc file the satellite's request, carry it out and return the

results to the disc file. The central computer then proceeds to

other work while the user examines the results, perhaps modifies

his program or decides on a next case. The central computer is

brought in only for significant computational tasks and never

waits for the user. The user may occasionally have to wit a

short time for the central computer 1 ), but since the tasks he

gives it are only those requiring a considerable amount of

computation, this is not unreasonable.
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In a sense, the satellite computer functions as a kind of

informational impedance matching device between the man and the

large central computer. Taken by themselves, these are mismatched

with respect to both operations per second and dollars per hour.

However, the satellite computer is economically matched to the

man (i.e., rents for a figure comparable to his salary) and at

the same time is suffic. ently well matched to the central computer

in terms of data transfer so as to be consistent with the economic

constraints concerning the latter's use. Of course, many variants

of this basic scheme are possible, some more suited to a particular

computer center than others. Because our experience indicates

that it is convenient to have of the order of 50 to 60 keys, we

specify two typewriter keyboards, but in principle the necessary

control capability, including that required for console programming,

could be provided with far fewer keys. (Ten, representing the

digits 0 through 9, plus one more _ to, so to speak, change

overlays _ is probably the minimum required to provide a

reasonable degree of operational comfort.) Because the simultaneous

display of many curves on a single CRT scope gets quite confusing,

it is very convenient to have two scopes, particularly for problems

where one wishes to examine a mapping from one plane to another.

One scope might be sacrificed, but we would argue strongly against

the elimination of both, having found the rapid feedback of

information in graphical form to be a tremendous asset in studying

the structure of a problem and of the tools one creates, in the
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form of console programs, to solve it, not to mention its value

in checking and trouble shooting the latter. In any case, the

effective implementation of such a system will share some of

12)
the problems inherent in any time-sharing arrangement

We consider briefly the generalization of on-line techniques

to other problem areas. The emphasis on functional orientation

is particularly important for non-local problems but it is

straightforward to include also a capability for dealing with

individual nunbers, something which would be useful, for instance,

in solving differential or difference equations. This requires

only an overlay (04, say) which interprets the function keys as

single numbers, i.e., allows the function keys to address

individual cells of the computer memory rather than function

storage blocks on the drum, the arithmetic on Overlay 04 being

just the conventional single number arithmetic of the computer

itselfl3). Console programming would allow the composition of

operations on this overlay in the usual fashion.

The extension to areas of mathematics other than classical

analysis also seems feasible. To handle matrix problems, for

example, one would replace the functional format by one in which

matrices could be stored in the "function keys", with the basic

operators being now those of matrix arithmetic rather than

function arithmetic. For an algebra machine or a logic machine,

the basic, hand programmed keys would correspond to the

fundamental operations of these disciplines, but at present this
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is still somewhat speculative. In each case, the general

organizational scheme of the present system, including the

control and console programming aspects, would be preserved,

and only those parts (actually a small fraction) of the

programming associated with the functional orientation and with

the graphical displays would be altered. While this is true

also of other areas of computer application (e.g., those

involving information processing rather than mathematics),

the identification of the basic operations from which all

others can be compounded by console programming appears far

more difficult, there being no analog for the experience

accumulated in the physical and mathematical sciences during

the past 300 years.

We turn now to the system as it presently exists. We

note that much of its power derives from the fact that sub-

stitution can be carried out at several levels: substitution

of numbers, of functions and of programs. Substitution of

different parameter values is carried out by simply writing the

console programs with the parameters in question represented

by certain function keys; one then has only to insert the

desired constant functions into these keys before running a

program. The capability for functional substitution is provided

by the REFLECT and SUBSTITUTE keys. Given two functions u(x) in

the C register and v(x) in the D register, the SUBSTITUTE key

produces in the D register the function v(u). When displayed,
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$ this will be a curve in the (u,v) plane. Conversely, given such

a curve, v(u), we can (as illustrated in the preceding chapter)

easily obtain the parameterized curves u(x) and v(x).

Most important perhaps is the possibility of substitution

at the program level. Suppose that we wish to make a change

in a console programmed key [K] which is one of the components

of another key [LJ, L3in turn being a component of still a third

key, [M]. If we wish to substitute a new console program for

the one presently under [K], we simply program [K] in the same

way as one does with a blank key; the program formerly associated

with [K] will be buried. Alternatively, we may find that the

console program associated with [K] is so basic and takes so long

to run that it should be replaced with a hand program. (For

this replacement the "user" must get the help of a "computer

expert".) In either case, the program associated with key [M]

will run precisely as before, save for the desired modification

in [K], for the program in [M] recognizes [K] only as a key

push, regardless of the significance of the subroutine it

calls in.

One thus has the ability to manipulate console programs

with approximately the same freedom as one juggles the mathematical

operations which they represent, a feature not present in con-

ventional programming languages. As a result, problems which

are adjacent in the mathematical sense become so computationally

as well; one can proceed from the simple to the more complicated,

always building upon the results of what one has learned, without

-38-



the necessity for redoing all of the programming as new pieces

are added or old ones are modified.

While we have characterized the "user" of the on-line

system as a scientist unversed in conventional programming

methods, it is clear that the creation of console programs

involves the very essence of programming, albeit with most

of the drudgery eliminated, and that "users" would benefit

from the advice of someone familiar with programming. Indeed,

operation of the on-line system involves two activities which

at first sight appear separable; a) the creation of those

console programs needed for a problem; and b) the use of these

in its solution. Why not let someone we may call a "console

programmer" (since his qualifications will differ somewhat

from those appropriate to programmers in the standard meaning

of the word) take care of a), the "user" being involved only

with b)? The point is just that a) and b) are in fact

strongly coupled; as soon as one starts to use b) he typically

finds that some changes or additions are needed and he must

revert back to a). If the user does not actually do a) himself,

he must certainly work very closely with the "console programmer"

who does, in order that he thoroughly understand the significance

of the keys in his system. Moreover, unless the user is familiar,

from hand computation or other experience, with numerical methods,

a mathematician skilled in such matters had better be available

for consultation; for the privilege of having direct access to a
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computer, the user must pay the price of being exposed also to

questions of scaling, error accumulation and all the other

technical problems which are of course involved in any compu-

tational work but which are seen dimly, if at all, by the user

when, as in most conventional organizations, he is insulated

from the computer by several layers of intermediaries.

In conclusion, we should emphasize that there will be

many computer applications for which these on-line techniques

will be of little or no value. If one thoroughly understands

the structure of a problem and knows a method of solution which

is certain to work, then the experimentation and feedback

characteristic of the on-line system are unnecessary. Indeed,

such problems are handled very nicely by computer centers as

presently constituted. It appears, however, that for problems

whose structure is not clear, either a priori or on the basis

of previous experience, and for which successful solution

techniques need to be developed, an on-line system which allows

the technical intuition of the user to play a central role in

the solution process can be of considerable value. In this

system, the user has a direct and convenient access to the

computer, a fast response for computations which are

essentially trivial, and a graphical representation of

information where appropriate. He can build programs con-

sisting of his own constructs within his own field, combine

these in any desired way, and, if appropriate, make a
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trial-and-error study of the various features of his problem.

Indeed, the interplay of the structural elements is often more

important than the solution itself in terms of the information

desired in a research problem. Since he has control over the

transformations, operators and other mathematical objects

involved in his problem, he is able to get hold of the pieces

and study the ingredients from the point of view of validity

as well as from the point of view of structure. When he has

found successful methods, he can combine these into an

operating program without the necessity of reprogramming. Finally,

from the bulk data available after solving a problem, he is

able to select only that which he really desires, either as

hard copy, numerical output or in the form of pictures of curves

displayed on the CRT.
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APPENDIX - DESCRIPTION OF BASIC SUBROUTINES FOR

AN ON-LINE SYSTEM

The initial hand programmed keys which at present comprise

the basic system from which every user starts may be divided into

five categories, save for the especially significant SECOND

COMPUTER key, which stands by itself:

1. Mathematical operations.

2. Capabilities which provide assistance in the creation

of console programs.

3. Programs having to do with displays or with other

input/output aspects.

4. Operations involved in management of the computer

system.

5. Conveniences for the computer expert who may be

concerned with band programming.

Many other items could be added to the list which follows

and some of those given here could be omitted. While our set is

neither exhaustive nor minimal, it has proved to be extremely

convenient. Names of operator keys are in capital letters;

headings not capitalized refer to groups of keys so closely

related that to save space we have not listed them separately.

In the description of keys we shall, in the interest of simplicity,

ignore the multiplicity of function 
banks14 ).
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Al. Mthematical Keys

LOAD LOAD, A brings the function in key A of bank I into

the D register. (It also remains in A on bank I.) Similarly for

LOAD,,, --- LO I•

STORE STORE puts the function in the D register into keyI

A on bank I, leaving it also in the D register, Similarly for

STOREII ---STOREvI.

FLOAT-MANTISSA The y values of the D register are shifted

left as many times as possible without causing any one of them to

overflow, and the scale value sy is adjusted appropriately. The

x values of the D register are unchanged.

+ On Overlay 01, + A puts the function stored in key A

into the C register, and then compares the y scales of the C and D

registers. If the scales are equal, the y values are added together

and left in the D register. If the y scales are unequal, the

function with the smaller scale is contracted until the scales are

equal and the addition is then performed. The x coordinates of

the D register are unchanged. If the same operation is performed

on Overlay 02, both functions are floated, each is contracted once,

and the addition is then carried out as on Overlay 01.

On Overlay 01, ' A loads the function stored in key A

into the C register, multiplies its y values by those of the D

register, adds the scales, and leaves the result in the D register.

In the same operation on Overlay 02, each function is first floated.
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__ Subtraction is performed in the same fashion as

addition,

On Overlay 01, . B loads the function stored in key B

into the C register, divides the y values in the D register by

those in the C register, subtracts the scale values, and leaves

the result in the D register. When the same operation is per-

formed on Overlay 02, each function is first floated and the

numerator is then contracted enough times to prevent overflow

at any point unless this requires more than 12 contractions, in

which case the numerator is simply contracted 12 times.

_F takes the square root of the function stored in the D

register and leaves the result in the D register.

LEFT-SHIFT The y values of the D register are shifted

one place to the left: yn+l replaces y n l- n - 100, and yl1l

is left unchanged.

RIGHT-SHIFT The y values of the D register are shifted

one place to the right: y n- replaces y n, 2 5 n - 101, and Yl

is left unchanged.

EVALUATE This allows one to evaluate the function in the

D register at the value of the x coordinate nearest to any selected

number, previously stored as a constant function in one of the

function storage spaces. The operation is as follows: EVALUATE B

loads the function stored in B into the C register and subtracts

the y coordinates of the C register from the x coordinates of the
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D register. The y value in the D register corresponding to the

smallest of these differences is selected and all y coordinates

of the D register are set equal to that value.

EXPAND r The y values of the D register are multiplied

by two (shifted one place to the left) and the scale value s
y

is reduced by 1.

CONTRACT y The y values of the D register are multiplied

by 1/2 (shifted right one place) and the scale value sy is

increased by 1.

Both EXPAND and CONTRACT leave the numerical value of the

function invariant since a change in scale appropriately compensates

the alteration in mantissa values. However, since only the latter

are displayed, the appearance of the function on the CRT is altered.

One can use EXPAND to examine in detail the small amplitude structure

of a curve, letting the other parts overflow being careful, of

course, to retain the original representation of the function in

another storage spot ; it thus complements FLOAT-MANTISSA. If one

uses Overlay 01 (fixed point arithnetic) CONTRACT is necessary in

order to avoid overflow in addition, subtraction. Finally, both

EXPAND and CONTRACT are useful in bringing curves to a common

scale for visual comparison.

5 FUNCTION This creates a Kronecker-8 type function, i.e.,

one which has the value 1 at one point and zero everywhere else. To

create the function 5 = 5(x - a), load the number a into the Da

register then push the 8 function button. The desired function
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then appears in the D register, i.e., all of the y coordinates in

the D register are made 0, save the one corresponding to the value

of x nearest to (or equal to) a, and it is set equal to 1.

EXPONENTIAL The exponential of the function in the D

register is computed and the result is left in the D register.

SINE-COSINE The sine and cosine of the function in the D

register are computed. The sine is put in place of the y values

of the D register; the cosine is put in place of the x values of

the D register. (This may alternatively be considered as a

complex exponential e i f , where f is the function in the D register.)

J-GEN The identity function, y = x, -1 5 x : 1 is put in

the D register.

REFLECT The x and y values of the D register are inter-

changed, as are also the scale values, sx and sY

SUBSTITUTE The y coordinates of the C register replace

the x coordinates of the D register and similarly for the scale

values. This permits, for instance, the cross plotting of two

dependent variables which are functions of the same independent

variable. Together with REFLECT, it allows one easily to create

console programs for complex-valued functions of complex arguments

using only real function hand programs (i.e., those described in

the foregoing part of this section).
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INTEGRAL TRANSFORM The integral transform of the function

b

(x)= dx' K(x, X') f(x')

a

f stored in the D register is computed, using a kernel K(x, x')

which has been stored out on magnetic tape in the form of 101

functions of x', one for each value of x. Assuming that the tape

has been correctly positioned and that f is in the D register, we

simply push the INTEGRAL TRANSFORM key. The first of the 101

functions, i.e., K(a, x'), is then read into the C register and

multiplied by the function in the D register. The definite

integral is computed and the resulting nunber is stored in the

first x coordinate of the D register. The next function, i.e.,

K(a + c, x'), E = (b - a)/100, is then read from tape into the

C register and the process repeated, the result being stored as

the second x value of the D register. At the completion of the

operation, which requires 7 seconds, f is still contained in the

y coordinates and f is in the x coordinates of the D register.

To transform the latter into standard form one could, for example:

REFLECT STORE A, LOAD 0 + A (the addition to 0 being one means of

restoring the x coordinates of the D register to the canonical

form used for the displays).

RELATIVE-INTERPOLATE This uses individual data points,

put in with the graphical input techniques described below

(Section A3), to modify the function, say f, which has been loaded

into the D register. If Pa and Pb are two of the data points, the
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program first finds the two points, P a and Pb' of f whose x

coordinates match those of Pa and P b If L is the straight line

PPb and L is the line PaPb, the function f is replaced by

(f - L + L) for xa n x ! Xb. The function is left unchanged

between x = -1 and the smallest of the x . (Before f is loaded

into the D register, it should be displayed on the CRT scope to

serve as a guide for placing the data points on the screen with

the crosshair.)

A2. Aids to Console Programming

PROGRAM Press PROGRAM; then press the key to which

the program to be written is to be attached; then type in the

overlay number on which that key is to be located; then press

the keys which will make up the desired program; at the end

press PROGRAM again.

REPEAT Press REPEAT; then press any repeatable key

(i.e., either a hand programmed key, or a console programmed key

whose program ends on the same overlay on which the key itself

is located); then type in on the numerical keys the number of

times the operation is to be repeated. This repeat operation

can, of course, itself be incorporated into a console program.

TALLY This is used only within a console program and

is one of two capabilities for program branching. TALLY must be

imbedded in some console programmed subroutine; that is to say,

it must be one of the series of key pushes which make up some

console programmed key. When, in the running of that subroutine,
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the computer comes to the point where the TALLY key was pushed, it

checks the scale value sy of the D register. If s is positive
y y

the computer reduces s by 1 and proceeds to the next key in the
y

subroutine; if the scale is 0 or negative, it jumps to the end of

this particular subroutine.

COMPARE This operates in the same fashion as TALLY but

uses as its criterion the sign of the first y value, y1, of the D

register. If this is positive, the computer continues to the next

key push; otherwise, it jumps to the end of the subroutine in

which COMPARE is imbedded.

(These keys make possible the incorporation of standard

programming techniques - loops, tallys, etc. - at the console

programming level.)

A3. Display and Output Keys

DISPLAY OVERLAY NUMBER The number of the overlay

currently in the computer is displayed on the alphanumeric scope.

ERASE All curves are erased from the CRT.

DISPLAY DISPLAY A causes the function stored in location

A to be displayed; pushing A again erases that curve from the

scope. Subsequently pushing other keys will cause the curves stored

in them to be displayed also, until some other operator key is

pressed.

DISPLAY VALUE AND SCALE, BINARY The mantissa of the first

y value of the D register and the y scale, sy, of the D register

are displayed on the alphanumeric scope.
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DISPLAY VALUE, DECIMAL If Yl is the mantissa of the

first y value in the D register and s the scale of the function,
y

the number y 2 y is displayed as a decimal mantissa times a

power of 10.

GRAPHICaL INPUT Press POINT-INPUT; then DISPLAY-

CROSSHAIR. A crosshair, whose position can be controlled by a

lever, is displayed on the screen. After positioning it at any

desired point, push TRANSMIT-CROSSHAIR-COORDINATE. The x and y

coordinates of the selected point are then transmitted to the

computer and a small crosshair symbol is displayed on the scope

at that point. The points thus put in are accumulated and can

be used in conjunction with the RELATIVE INTERPOLATION key

described in Section Al.

PRINT Any curve loaded into the D register will be

printed out on the flexwriter in conventional format, i.e., the

x and y values will be listed in decimal form.

LABEL After this is pushed, the function keys serve

as typewriter keys and can be used to compose any desired alpha-

numeric message. (Each letter or number is displayed on the

alphanumeric scope as it is typed.) This is useful for generating

a label to go with a kernel stored on tape, a message which is to be

written on tape along with a system dump, or an identifying legend

to accompany a hard copy curve when the PRINT key is used.

LEFT SCOPE A word in the display routine is set so that

any curve subsequently displayed with the usual DISPLAY key will

appear on the lefthand 17 inch CRT.
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RIGHT SCOPE A word in the display routine is set so

that any curve subsequently displayed with the standard DISPLAY

key will appear on the righthand scope.

Alternative Display Formats There are several keys

which allow the capability of displaying curves in other than

the usual format. Ordinarily 100 straight line segments

connecting the 101 points are displayed. However, one can

instead display only the 101 dots with no connecting line, or

other symbols such as crosses, circles, etc.

A. System Control Capabilities

The keys in this group allow for convenient management

of the entire computer system. Only the first few are needed

by the typical user; those with an asterisk are used only by the

computer expert and may be disregarded by readers not in that

category.

SYSTEM LOAD An entire system - overlays, curves,

subroutines, etc. - is loaded from tape into the computer

system. Whenever a user starts a period on the machine, he has

his tape put on the tape unit and pushes SYSTEM LOAD, thereby

putting the entire computer system into the same state it was

when he last used it.

SYSTEM DUMP This is the inverse operation to SYSTEM

LOAD, and is used at the end of each user's run.

TAPE READ This reada a block of 512 words from

magnetic tape into the C and D registers of the computer.
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TAPE WRITE This writes contents of the C and D registers

as a 512 word block on magnetic tape.

Tape Manipulation There are keys for erasing a block on

tape, skipping a block on tape, skipping to an end of file, writing

an end of file; rewinding the tape, etc.
*

DRUM READ ERUM READ nm reads into the C and D registers,

from the drum, the computer program corresponding to Overlay nm.

This allows the computer expert to examine or modify the actual

machine words comprising the hand programs of this overlay.

DRUM WRITE This is the inverse of the RUM READ

operation and is used to replace an overlay on the drum after it

has been examined or modified,

SUBROUTINE READ SUBROUTINE READ nml stores the

automatic subroutine with identification number nml into the C

register where it can be examined or modified by a computer expert.
*

SUBROUTINE WRITE This is the inverse of SUBROUTINE

READ.

A5. Aids for the Hand Programmer

All of these keys are for the computer expert alone and,

like the last items in Section A4, should be ignored by readers

who are not in this class. Their descriptions are included here

only for completeness.

OVERIAY OUT OVERLAY OUT nm stores the overlay now in

the computer onto the drum in the appropriate place. This is

necessary after hand program alterations have been made in an

overlay.
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INSERT This is a convenient method of inserting short

hand programs into the system. Press INSERT, then a CM address

(4 digits on the numerical keys), then ENTER, then a machine word

(i0 digits on the numerical keys), then ENTER. Any number of

additional machine words can now be typed in (each followed by

ENTER); they will be stored in sequence in the locations following

the first one. In addition, each word (and the address of the

first one) is displayed on the alphanumeric scope.

DO This is simply a convenient means of causing the

computer to execute any single instruction on command from the

control console. Press DO, then type in on the numerical keys

any machine command (again, 10 digits for this particular computer)

followed by ENTER.

DISPLAY OF MEMORY CONTENTS This is a convenient means

of examining the contents of any portion of the CM memory. Push

DISPLAY MEMORY, then type in the four digits specifying an address

in the CM. That address and the (10 digit) machine word it contains

are then displayed on the alphanumeric scope. If a number n is now

entered on the numerical keys, the next n words of the CM memory

will be displayed, an operation which can be repeated as often as

desired. DISPLAY ME4ORY need be pushed again only if one wishes

to examine a non-contiguous portion of the memory. The incorporation

of this capability into suitable console programs provides the

computer expert with a convenient means of dynamically debugging a

hand program.
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A6. The SECOND COIMPUTER Key

In a class by itself is the SECOND COMPUTER key (although

in a logical sense it probably could be included in Section Ak).

The RW-400 system has two identical computer modules, CM-1 and

CM-2. The control console normally communicates directly with

CM-1, and CM-2 is not used. However, pressing the second

computer key, then any previously programmed key [K], followed

by the number of the overlay on which [K] is located, causes

the SECOND COMPUTER to carry out whatever program is associated

with key [K], taking from the drum the subroutines, curves, and

other information needed in doing this. While this is going on,

the user at the control console is free to use CM-1 for any of

the normal operations, e.g., to examine the results being

generated by 014-2, to prepare for the next case to be run, to

create new console programs, etc.
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Figure 2. The kernel function Le, defined by (I0), as obtained
by iterating (18), correcting the result using (21), etc. The
slightly damped curve is for k = 0.4; the strongly damped one is
for k = 1.0. A dotted curve shows the result for k = 1 obtained
by retaining only the two least damped poles in the Laplace
transform of Le when inverting the transform by contour integration.
Grid lines: y = 0, + 1/2; t = 7.5, 15, 22.5.

Figure 3. E(t) in the complex plane for 1$ t !-30 with k = 0,
: 0 and (reading from left to right) u = 0.8, 0.9, 1.0, 1.1,

1.2. These u values bracket the region of resonance, i.e., of
growing waves. The curves all start at the point E = 1. Also
shown are the real and imaginary E axes and the circles (El = 8
and tEl = 16.



Figure 4. E(t) for k = 0, - 0.1. The range of d4/dt,
0 -  * 3, includes the values used in Figure 3 (where 1 is
constant). The approach of E to an approximate limit circle
centered at E(t = O) can be predicted analytically for the
single species case (b = 0). The circles IEJ = 4 and

E = 8 are shown.

Figure 5. E(t) for k = .4, = 0 and (from left to right)
u = 0.9, 1.0, 1.1, 1.14, 1.2. Note the increased damping as
compared with the k = 0 case. The circle tEl = 8 is shown.
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Figure 6. E(t) for k = 0.4, £ = 0.1. Fiure 7. E(t) for k = 1.0,F = 0 and
The analytic solution for the single (left to right) u = 0.8, 1.0, 1.2, 1.3,
species case (6 = O) shows that the 1.4, 1.5, 1.7, 1.8. The high frequency
radius of the limit "circle" approached (electron plasma) oscillations, W Z 1,
by E should be a slowly decreasing damp out completely during the time interval
function of t. The circles IEI = 4 depicted, leaving only low frequency vaves
and tE = 8 are shown. (associated with ion motion) which appear

as bright "tails" on the curves. Arcs of
the circles (El = 1 and JEl = 2 are shown.

Figure 8. E(t) for k = 1, & 0.1. The limit circle for
8 = 0 in this case should damp as e"O '$t. The circles
(El = 1 and IEI = 2 are shown.


